研究直流磁控反应溅射ITO膜过程中ITO靶材的毒化现象,用XRD、EPMA、LECO测氧仪等手段对毒化发生的机理进行分析,并对若干诱导因素进行讨论,研究表明ITO靶材毒化是由于In2O3。主相分解为In2O造成的,靶材性能及溅射工艺缺陷都可能诱导毒化发生.
ITO薄膜作为一种重要的透明导电氧化物半导体材料,因具有良好的导电性能及光透射率广泛应用于液晶显示、太阳能电池、静电屏蔽、电致发光等技术中,用氧化铟+氧化锡烧结体作为靶材,直流磁控反应溅射法制备ITO薄膜与用铟锡合金靶相比,具有沉积速度快,膜质优良,工艺易控等优点成为目前的主流?但是,此法成膜过程中会经常发生??靶材表面黑色化,生成黑色不规则球状节瘤,本文称此现象为靶材毒化,毒化使溅射速率下降,膜质劣化,迫使停机清理靶材表面后才能继续正常溅射,严重影响了镀膜效率。河南智能玻璃陶瓷靶材陶瓷靶材的制备工艺难点;
ITO靶材被广泛应用于各大行业之中,其主要应用分为:平板显示器(FPD)产业,薄膜晶体管显示器(TFT-LCD)、液晶显示器(LCD)、电激发光显示器(EL)、电致有机发光平面显示器(OELD)、场发射显示器(FED)、等离子显示器(PDP)等;光伏产业,如薄膜太阳能电池;功能性玻璃,如红外线反射玻璃、抗紫外线玻璃如幕墙玻璃、汽车、飞机上的防雾挡风玻璃、光罩和玻璃型磁盘等三大域。但主要应用于还是在平板显示器中,它是溅射ITO导电薄膜的主要原料,没有它的存在,诸多的材料将无法实现正常加工以及设计。ITO薄膜由于对可见光透明和导电性良好的性,还被广泛应用于液晶显示玻璃、幕墙玻璃和飞机、汽车上的防雾挡风玻璃等。
靶材开裂影响因素裂纹形成通常发生在陶瓷溅射靶材(如氧化物、碳化物、氮化物等)和脆性材料溅射靶材(如铬、锑、铋等)中。陶瓷或脆性材料目标始终包含固有应力。这些内应力是在靶材制造过程中产生的。此外,这些应力不能通过退火过程完全消除,因为它是这些材料的固有特性。在溅射过程中,轰击的气体离子将其动量传递给目标原子,为它们提供足够的能量来脱离晶格。这种放热动量传递增加了目标的温度,在原子水平上可能达到1,000,000摄氏度。这些热冲击将目标中已经存在的内部应力增加到许多倍。在这种情况下,如果不注意适当的散热,靶材可能会开裂。靶材开裂预防措施为了防止靶材开裂,重要的考虑因素是散热。一方面运用水冷机制来去除靶材中不需要的热能,另一方面考虑提高功率,在很短的时间内提升功率也会给目标带来热冲击。此外,建议将这些靶材绑定到背板上,这不仅为靶材提供支撑,而且还促进靶材与水之间更好的热交换。如果靶材破裂有背板加持的情况下,它仍然可以毫无问题地使用。靶材是半导体、显示面板、异质结光伏领域等的关键材料,存在工艺不可替代性。