数控镗铣头的检测方法:
用两个标准,测量数据的整理均采用数理统计方法。即沿平行于坐标轴的某一测量轴线选取任意几个定位点(一般为5~15个),然后对每个定位点重复进行多次定位(一般为5~13次)。可单向趋近定位点,也可以从两个方向分别趋近,然后对测量数据进行统计处理,求出算术平均值。更换刀(镗刀头)具时,必须先停机,经确认后才能更换,更换时应该注意刀刃的伤害。进而求出平均值偏差、标准差、分散度。分散度代表重复定位精度,它和平均值偏差一起构成定位精度,两者之和是在任意两点间定位时可能达到的大定位偏差。
超重型数控龙门移动镗铣床横梁的有限元分析与结构优化
运用 Siemens PLM Software NX7. 5 软件建立溜板、镗铣头滑枕等三维实体模型。由于设计真主要分析的目的为横梁体在受力情况下的变形情况,并且考虑到模型的大小和计算机的计算量,将溜板、滑枕式镗铣头等三维模型简化为0D 集中质量单元,并采用1D 单元连接,具体简化模型如图 5 所示。人们在进行高精密度的机械制造加工时,镗铣头作为与主轴连接的机床附件必不可少。
横梁 体 采 用 铸 铁 材 料 HT200,在 Siemens PLMSoftware NX7. 5 软件材料库中选用相应材料参数,如表 1 所示。
超重型数控龙门移动镗铣床横梁的有限元分析与结构优化
文献[7]基于有限元分析方法预估弹性横梁静态承载曲线,进而得到横梁起拱曲线,并通过实验对起拱曲线进行验证。
文献[8]通过对龙门加工中心横梁关键尺寸的灵敏度分析,找出了对横梁静变形量和一阶频率影响较大的尺寸变量,上下壁厚是横梁结构静变形量灵敏度大的尺寸,纵向筋板是横梁结构一阶固有频率灵敏度大的尺寸; 以横梁静变形量和一阶模态频率为性能指标,结合灵敏度分析结果,采用变尺寸法对横梁进行结构优化分析,提高了横梁的静动态特性,并降低了横梁的重量。由文献[1]可知成功设计制造了超重型数控龙门镗铣床,满足用户的加工要求。
文献[9]中数控龙门机床 8 m 长的横梁材料采用高强度低合金结构钢 Q345B,采用焊接工艺加工。利用 ANSYS Workbench 对机床横梁进行了静动态有限元分析,在此基础上进行了拓扑优化设计,并且制造出机床。